Análisis bibliométrico de la predicción de lesiones en miembros inferiores

Autores/as

Palabras clave:

bibliometría, extremidad inferior, predicción, rehabilitación, aprendizaje automático.

Resumen

Este artículo realiza un análisis bibliométrico acerca de la predicción de lesiones en extremidades inferiores. Para ello se parte de una búsqueda bibliográfica en las bases de datos Scopus y Web of Science durante el período 2018-2022, utilizando cadenas booleanas de búsqueda. Se empleó un software de gestión documental, la minería de texto y un mapeo sistemático para encontrar las tendencias a nivel mundial. En cuanto a los resultados, se tuvieron en cuenta 4838 documentos. En los últimos cinco años existe un interés por centrar las investigaciones en palabras como “machine learning”, “deep learning”, “rehabilitation”, “gait” y “electromyography”. Cuando el foco es la palabra “injury” sobresale la red que se genera con las palabras: “machine learning”, “injury prevention”, “prediction”, “running” y “knee”. En lo que concierne a la predicción de lesiones de extremidades inferiores, las publicaciones han aumentado durante los últimos cinco años y centran su atención en los pacientes para la aplicación de modelos de datos en función del control y la rehabilitación. Se muestran focos de atención y redes entre las palabras “injury prevention”, “machine learning” y “rehabilitation”. Las investigaciones futuras deben centrar sus esfuerzos en determinar la variabilidad y la especificidad de los procesos de aprendizaje automático utilizados para la prevención y el control, teniendo en cuenta el tejido, el tipo de lesión, la zona y la articulación afectada.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ley C. Participation Motives of Sport and Exercise Maintainers: Influences of Age and Gender. Int J Environ Res Public Health. 2020;17(21):7830. DOI: https://doi.org/10.3390/ijerph17217830

Menhas R, Dai J, Ashraf MA, M Noman S, Khurshid S, Mahmood S, et al. Physical Inactivity, Non-Communicable Diseases and National Fitness Plan of China for Physical Activity. Risk Manag Healthc Policy. 2021;14:2319-31. DOI: https://doi.org/10.2147/RMHP.S258660

Andersen MH, Ottesen L, Thing LF. The social and psychological health outcomes of team sport participation in adults: An integrative review of research. Scand J Public Health. 2019;47(8):832-50. DOI: https://doi.org/10.1177/1403494818791405

Eime RM, Young JA, Harvey JT, Charity MJ, Payne WR. A systematic review of the psychological and social benefits of participation in sport for children and adolescents: informing development of a conceptual model of health through sport. Int J Behav Nutr Phys Act. 2013;10(1):98. DOI: https://doi.org/10.1186/1479-5868-10-98

Emery CA, Pasanen K. Current trends in sport injury prevention. Best Pract Res Clin Rheumatol. 2019;33(1):3-15. DOI: https://doi.org/10.1016/j.berh.2019.02.009

Li Y, Shan B, Li B, Liu X, Pu Y. Literature Review on the Applications of Machine Learning and Blockchain Technology in Smart Healthcare Industry: A Bibliometric Analysis. J Healthc Eng. 2021;2021:1-11. DOI: https://doi.org/10.1155/2021/9739219

Karnuta JM, Luu BC, Haeberle HS, Saluan PM, Frangiamore SJ, Stearns KL, et al. Machine Learning Outperforms Regression Analysis to Predict Next-Season Major League Baseball Player Injuries: Epidemiology and Validation of 13,982 Player-Years from Performance and Injury Profile Trends, 2000-2017. Orthop J Sports Med. 2020;8(11):2325967120963046. DOI: https://doi.org/10.1177/2325967120963046

Cascajares M, Alcayde A, Salmerón-Manzano E, Manzano-Agugliaro F. The Bibliometric Literature on Scopus and WoS: The Medicine and Environmental Sciences Categories as Case of Study. Int J Environ Res Public Health. 2021;18(11):5851. DOI: https://doi.org/10.3390/ijerph18115851

Ninkov A, Frank JR, Maggio LA. Bibliometrics: Methods for studying academic publishing. Perspect Med Educ. 2022;11(3):173-76. DOI: https://doi.org/10.1007/s40037-021-00695-4

Jauhiainen S, Kauppi JP, Leppänen M, Pasanen K, Parkkari J, Vasankari T, et al. New Machine Learning Approach for Detection of Injury Risk Factors in Young Team Sport Athletes. Int J Sports Med. 2021;42(2):175-82. DOI: https://doi.org/10.1055/a-1231-5304

Van Eck NJ, Waltman L. Text mining and visualization using VOSviewer. 2011;1-5. DOI: https://doi.org/10.48550/arXiv.1109.2058

van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523-38. DOI: https://doi.org/10.1007/s11192-009-0146-3.

Murtagh F, Legendre P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J Classif. 2014; 31: 274–295. DOI: https://doi.org/10.1007/s00357-014-9161-z

Holsteen KK, Choi YS, Bedno SA, Nelson DA, Kurina LM. Gender differences in limited duty time for lower limb injury. Occup Med (Lond). 2018;68(1):18-25. DOI: https://doi.org/10.1093/occmed/kqx169

Dallinga JM, Benjaminse A, Lemmink KAPM. Which screening tools can predict injury to the lower extremities in team sports?: A systematic review. Sports Med. 2012;42(9):791-815. DOI: https://doi.org/10.1007/BF03262295

Lu D, McCall A, Jones M, Steinweg J, Gelis L, Fransen J, et al. The financial and performance cost of injuries to teams in Australian professional soccer. Journal of science and medicine in sport. 2021;24(5):463-7. DOI: https://doi.org/10.1016/j.jsams.2020.11.004

Marshall AN, Snyder Valier AR, Yanda A, Lam KC. The Impact of a Previous Ankle Injury on Current Health-Related Quality of Life in College Athletes. J Sport Rehabil. 2020;29(1):43-50. DOI: https://doi.org/10.1123

/jsr.2018-0249

Van Eetvelde H, Mendonça LD, Ley C, Seil R, Tischer T. Machine learning methods in sport injury prediction and prevention: a systematic review. J Exp Orthop. 2021;8(1):27. DOI: https://doi.org/10.1186/s40634-021-00346-x

Ayala F, López-Valenciano A, Gámez Martín JA, De Ste Croix M, Vera-García F, García-Vaquero M, et al. A Preventive Model for Hamstring Injuries in Professional Soccer: Learning Algorithms. Int J Sports Med. 2019;40(5):344-53. DOI: https://doi.org/10.1055/a-0826-1955

Reyes Rodríguez A, Moraga Muñoz R. Criterios de selección de una revista científica para postular un artículo: breve guía para no ‘quemar’un paper. Sophia. 2020;16(1):93-109. DOI: https://doi.org/10.18634/sophiaj.16v.1i.977

Gautam A, Panwar M, Biswas D, Acharyya A. MyoNet: A Transfer-Learning-Based LRCN for Lower Limb Movement Recognition and Knee Joint Angle Prediction for Remote Monitoring of Rehabilitation Progress From sEMG. IEEE J Transl Eng Health Med. 2020;8:1-10. DOI: https://doi.org/10.1109/JTEHM.2020.2972523

Lim H, Kim B, Park S. Prediction of Lower Limb Kinetics and Kinematics during Walking by a Single IMU on the Lower Back Using Machine Learning. Sensors (Basel). 2019;20(1):130. DOI: https://doi.org/10.3390/s20010130

Khera P, Kumar N. Role of machine learning in gait analysis: a review. J Med Eng Technol. 2020;44(8):441-67. DOI: https://doi.org/10.1080/03091902.2020.1822940

Cha B, Lee K-H, Ryu J. Deep-Learning-Based Emergency Stop Prediction for Robotic Lower-Limb Rehabilitation Training Systems. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2021;29:1120-8. DOI: https://doi.org/10.1109/TNSRE.2021.3087725

Cronin NJ, Rantalainen T, Ahtiainen JP, Hynynen E, Waller B. Markerless 2D kinematic analysis of underwater running: A deep learning approach. Journal of biomechanics. 2019;87:75-82. DOI: https://doi.org/10.1016/j.jbiomech.2019.02.021

Al Attar WSA, Khaledi EH, Bakhsh JM, Faude O, Ghulam H, Sanders RH. Injury prevention programs that include balance training exercises reduce ankle injury rates among soccer players: a systematic review. J Physiother. 2022;68(3):165-73. DOI: https://doi.org/10.1016/j.jphys.2022.05.019

Mailuhu AKE, van Rijn RM, Stubbe JH, Bierma-Zeinstra, SMA, van Middelkoop M. Incidence and prediction of ankle injury risk: a prospective cohort study on 91 contemporary preprofessional dancers. BMJ Open Sport & Exercise Medicine. 2021;7(2):e001060. DOI: https://doi.org/10.1136/bmjsem-2021-001060

Karnuta J, Luu B, Haeberle H, Saluan P, Frangiamore S, Stearns K, et al. Machine Learning Outperforms Regression Analysis to Predict Next-Season Major League Baseball Player Injuries: Epidemiology and Validation of 13,982 Player-Years from Performance and Injury Profile Trends, 2000-2017. Orthop J Sports Med. 2020;8(11):2325967120963046. DOI: https://doi.org/10.1177/2325967120963046

Mokri C, Bamdad M, Abolghasemi V. Muscle force estimation from lower limb EMG signals using novel optimized machine learning techniques. Medical & biological engineering & computing. 2022;68(3):683-99. DOI: https://doi.org/10.1007/s11517-021-02466-z

Karthick PA, Ghosh DM, Ramakrishnan S. Surface electromyography-based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms. Computer Methods and Programs in Biomed. 2018;154:45-56. DOI: https://doi.org/10.1016j.cmpb2017.10.024

Descargas

Publicado

2023-11-27

Cómo citar

1.
Villaquiran-Hurtado AF, Burbano Fernandez MF, Celis Quinayas VM, Hoyos-Quisoboni JA. Análisis bibliométrico de la predicción de lesiones en miembros inferiores. Rev. cuba. inf. cienc. salud [Internet]. 27 de noviembre de 2023 [citado 9 de mayo de 2025];34. Disponible en: https://acimed.sld.cu/index.php/acimed/article/view/2470

Número

Sección

Artículos Originales