Bibliometric Analysis of the Prediction of Lower Limb Injuries
Keywords:
bibliometrics, lower extremity, prediction, rehabilitation, machine learning.Abstract
This article covers a bibliometric analysis on the prediction of lower extremity injuries. To achieve this, we started with a bibliographic search in Scopus and Web of Science databases from 2018 to 2022, using Boolean search strings. Document management software, text mining and systematic mapping were used to find global trends. Regarding the results, 4838 documents were taken into account. In the last five years there has been an interest in focusing research on words such as “machine learning”, “deep learning”, “rehabilitation”, “gait” and “electromyography”. When the focus is on the word “injury”, the network that is generated with the words “machine learning”, “injury prevention”, “prediction”, “running” and “knee” stands out. Regarding the prediction of lower extremity injuries, publications have increased over the last five years and focus their attention on patients for the application of data models based on control and rehabilitation. Focuses and networks are shown among the words “injury prevention”, “machine learning” and “rehabilitation”. Future research should focus efforts on determining the variability and specificity of machine learning processes used for prevention and control, taking into account the tissue, type of injury, area and joint affected.
Downloads
References
Ley C. Participation Motives of Sport and Exercise Maintainers: Influences of Age and Gender. Int J Environ Res Public Health. 2020;17(21):7830. DOI: https://doi.org/10.3390/ijerph17217830
Menhas R, Dai J, Ashraf MA, M Noman S, Khurshid S, Mahmood S, et al. Physical Inactivity, Non-Communicable Diseases and National Fitness Plan of China for Physical Activity. Risk Manag Healthc Policy. 2021;14:2319-31. DOI: https://doi.org/10.2147/RMHP.S258660
Andersen MH, Ottesen L, Thing LF. The social and psychological health outcomes of team sport participation in adults: An integrative review of research. Scand J Public Health. 2019;47(8):832-50. DOI: https://doi.org/10.1177/1403494818791405
Eime RM, Young JA, Harvey JT, Charity MJ, Payne WR. A systematic review of the psychological and social benefits of participation in sport for children and adolescents: informing development of a conceptual model of health through sport. Int J Behav Nutr Phys Act. 2013;10(1):98. DOI: https://doi.org/10.1186/1479-5868-10-98
Emery CA, Pasanen K. Current trends in sport injury prevention. Best Pract Res Clin Rheumatol. 2019;33(1):3-15. DOI: https://doi.org/10.1016/j.berh.2019.02.009
Li Y, Shan B, Li B, Liu X, Pu Y. Literature Review on the Applications of Machine Learning and Blockchain Technology in Smart Healthcare Industry: A Bibliometric Analysis. J Healthc Eng. 2021;2021:1-11. DOI: https://doi.org/10.1155/2021/9739219
Karnuta JM, Luu BC, Haeberle HS, Saluan PM, Frangiamore SJ, Stearns KL, et al. Machine Learning Outperforms Regression Analysis to Predict Next-Season Major League Baseball Player Injuries: Epidemiology and Validation of 13,982 Player-Years from Performance and Injury Profile Trends, 2000-2017. Orthop J Sports Med. 2020;8(11):2325967120963046. DOI: https://doi.org/10.1177/2325967120963046
Cascajares M, Alcayde A, Salmerón-Manzano E, Manzano-Agugliaro F. The Bibliometric Literature on Scopus and WoS: The Medicine and Environmental Sciences Categories as Case of Study. Int J Environ Res Public Health. 2021;18(11):5851. DOI: https://doi.org/10.3390/ijerph18115851
Ninkov A, Frank JR, Maggio LA. Bibliometrics: Methods for studying academic publishing. Perspect Med Educ. 2022;11(3):173-76. DOI: https://doi.org/10.1007/s40037-021-00695-4
Jauhiainen S, Kauppi JP, Leppänen M, Pasanen K, Parkkari J, Vasankari T, et al. New Machine Learning Approach for Detection of Injury Risk Factors in Young Team Sport Athletes. Int J Sports Med. 2021;42(2):175-82. DOI: https://doi.org/10.1055/a-1231-5304
Van Eck NJ, Waltman L. Text mining and visualization using VOSviewer. 2011;1-5. DOI: https://doi.org/10.48550/arXiv.1109.2058
van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523-38. DOI: https://doi.org/10.1007/s11192-009-0146-3.
Murtagh F, Legendre P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J Classif. 2014; 31: 274–295. DOI: https://doi.org/10.1007/s00357-014-9161-z
Holsteen KK, Choi YS, Bedno SA, Nelson DA, Kurina LM. Gender differences in limited duty time for lower limb injury. Occup Med (Lond). 2018;68(1):18-25. DOI: https://doi.org/10.1093/occmed/kqx169
Dallinga JM, Benjaminse A, Lemmink KAPM. Which screening tools can predict injury to the lower extremities in team sports?: A systematic review. Sports Med. 2012;42(9):791-815. DOI: https://doi.org/10.1007/BF03262295
Lu D, McCall A, Jones M, Steinweg J, Gelis L, Fransen J, et al. The financial and performance cost of injuries to teams in Australian professional soccer. Journal of science and medicine in sport. 2021;24(5):463-7. DOI: https://doi.org/10.1016/j.jsams.2020.11.004
Marshall AN, Snyder Valier AR, Yanda A, Lam KC. The Impact of a Previous Ankle Injury on Current Health-Related Quality of Life in College Athletes. J Sport Rehabil. 2020;29(1):43-50. DOI: https://doi.org/10.1123
/jsr.2018-0249
Van Eetvelde H, Mendonça LD, Ley C, Seil R, Tischer T. Machine learning methods in sport injury prediction and prevention: a systematic review. J Exp Orthop. 2021;8(1):27. DOI: https://doi.org/10.1186/s40634-021-00346-x
Ayala F, López-Valenciano A, Gámez Martín JA, De Ste Croix M, Vera-García F, García-Vaquero M, et al. A Preventive Model for Hamstring Injuries in Professional Soccer: Learning Algorithms. Int J Sports Med. 2019;40(5):344-53. DOI: https://doi.org/10.1055/a-0826-1955
Reyes Rodríguez A, Moraga Muñoz R. Criterios de selección de una revista científica para postular un artículo: breve guía para no ‘quemar’un paper. Sophia. 2020;16(1):93-109. DOI: https://doi.org/10.18634/sophiaj.16v.1i.977
Gautam A, Panwar M, Biswas D, Acharyya A. MyoNet: A Transfer-Learning-Based LRCN for Lower Limb Movement Recognition and Knee Joint Angle Prediction for Remote Monitoring of Rehabilitation Progress From sEMG. IEEE J Transl Eng Health Med. 2020;8:1-10. DOI: https://doi.org/10.1109/JTEHM.2020.2972523
Lim H, Kim B, Park S. Prediction of Lower Limb Kinetics and Kinematics during Walking by a Single IMU on the Lower Back Using Machine Learning. Sensors (Basel). 2019;20(1):130. DOI: https://doi.org/10.3390/s20010130
Khera P, Kumar N. Role of machine learning in gait analysis: a review. J Med Eng Technol. 2020;44(8):441-67. DOI: https://doi.org/10.1080/03091902.2020.1822940
Cha B, Lee K-H, Ryu J. Deep-Learning-Based Emergency Stop Prediction for Robotic Lower-Limb Rehabilitation Training Systems. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2021;29:1120-8. DOI: https://doi.org/10.1109/TNSRE.2021.3087725
Cronin NJ, Rantalainen T, Ahtiainen JP, Hynynen E, Waller B. Markerless 2D kinematic analysis of underwater running: A deep learning approach. Journal of biomechanics. 2019;87:75-82. DOI: https://doi.org/10.1016/j.jbiomech.2019.02.021
Al Attar WSA, Khaledi EH, Bakhsh JM, Faude O, Ghulam H, Sanders RH. Injury prevention programs that include balance training exercises reduce ankle injury rates among soccer players: a systematic review. J Physiother. 2022;68(3):165-73. DOI: https://doi.org/10.1016/j.jphys.2022.05.019
Mailuhu AKE, van Rijn RM, Stubbe JH, Bierma-Zeinstra, SMA, van Middelkoop M. Incidence and prediction of ankle injury risk: a prospective cohort study on 91 contemporary preprofessional dancers. BMJ Open Sport & Exercise Medicine. 2021;7(2):e001060. DOI: https://doi.org/10.1136/bmjsem-2021-001060
Karnuta J, Luu B, Haeberle H, Saluan P, Frangiamore S, Stearns K, et al. Machine Learning Outperforms Regression Analysis to Predict Next-Season Major League Baseball Player Injuries: Epidemiology and Validation of 13,982 Player-Years from Performance and Injury Profile Trends, 2000-2017. Orthop J Sports Med. 2020;8(11):2325967120963046. DOI: https://doi.org/10.1177/2325967120963046
Mokri C, Bamdad M, Abolghasemi V. Muscle force estimation from lower limb EMG signals using novel optimized machine learning techniques. Medical & biological engineering & computing. 2022;68(3):683-99. DOI: https://doi.org/10.1007/s11517-021-02466-z
Karthick PA, Ghosh DM, Ramakrishnan S. Surface electromyography-based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms. Computer Methods and Programs in Biomed. 2018;154:45-56. DOI: https://doi.org/10.1016j.cmpb2017.10.024
Downloads
Published
How to Cite
Issue
Section
License
Aquellos autores que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un repositorio institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores difundir su obra a través de Internet (p. ej.: en repositorios institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto). En ese caso, solicitamos que en la cabecera del manuscrito se indique:"Esta es una versión preprint enviada a la Revista Cubana de Información en Ciencias de la Salud http://rcics.sld.cu/"
ENGLISH VERSION
AUTHORS WITH PUBLICATIONS IN THIS JOURNAL ACCEPT THE FOLLOWING TERMS:
- Authors will retain their copyright and will grant the Journal the right of first publication of their work, which will also be subject to a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) allowing third parties to share the work as long as the author's name and data about initial publication in this Journal are stated.
- Authors may adopt other license agreements for non-exclusive distribution of the version of the work published (e.g. deposit it in an institutional repository or publish it in a monographic volume), as long as initial publication in this Journal is indicated.
- It is permitted and recommended for authors to disseminate their work on the Internet (e.g. in institutional repositories or their web page) before and during the submission process, which may result in interesting exchanges and increase the number of citations of the published work) (see The effect of open access).