Identification of Published Topics on Ambulatory Blood Pressure Monitoring using Text Mining
Keywords:
artificial intelligence, blood pressure, text mining, ambulatory monitoring, data science, software, Cardiology.Abstract
Systemic arterial hypertension is the most prevalent disease worldwide that significantly increases cardiovascular risk. Ambulatory blood pressure monitoring allows recording readings over a 24-hour period, whether the patient is awake or asleep; it also detects occult hypertension and rules out white coat hypertension. The research aimed to identify published topics on ambulatory blood pressure monitoring, using text mining. With an R script, the Europe PMC databases were accessed; the number of publications and topics researched about ambulatory blood pressure monitoring with the descriptor "ABPM", during the period from 2010 to 2022, were requested. With the tm package was taken from text format to document, which was inspected; unneeded words and punctuations were removed, the text matrix was prepared; the most frequent elements were searched and a bar chart with the most frequent terms and word cloud was plotted with the worcloud2 package. The word cloud graph, the graph of publications per year and the word frequency graph were obtained. It was possible to identify the main topics published in the last 12 years on ambulatory blood pressure monitoring, as well as the growing interest in the subject.
Downloads
References
Lemus-Delgado D, Pérez Navarro R. Ciencia de datos y estudios globales: aportaciones y desafíos metodológicos. Colombia Internacional. 2020 [acceso 06/06/2021];(102):41-62. DOI: https://doi.org/10.7440/colombiaint102.2020.03
Sauza-Sosa JC, Cuéllar-Álvarez J, Villegas-Herrera KM, Sierra-Galán LM. Aspectos clínicos actuales del monitoreo ambulatorio de presión arterial. Archivos de Cardiología de México. 2016 [acceso 06/06/2021];86(3):255-9. Disponible en: https://www.scielo.org.mx/scielo.php?pid=S1405-99402016000300255&script=sci_abstract&tlng=pt
Consortium EP. Europe PMC: a full-text literature database for the life sciences and platform for innovation. Nucleic acids research. 2015 [acceso 06/06/2021];43(D1):D1042-D8. Disponible en: https://academic.oup.com/nar/article/43/D1/D1042/2437114
R_Core_Team. A language and environment for statistical computing. R Foundation for Statistical Computing. 2021 [acceso 06/06/2021]. Disponible en: https://www.r-project.org/
Feinerer I. Introduction to the tm Package Text Mining in R. 2022 [acceso 06/06/2021]. Disponible en: https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf
Lang D CG. Wordcloud2: Create Word Cloud by 'htmlwidget'_. R package version 0.2.12018. Disponible en: https://CRAN.R-project.org/package=wordcloud2
Hassani H, Beneki C, Unger S, Mazinani MT, Yeganegi MR. Text mining in big data analytics. Big Data and Cognitive Computing. 2020;4(1):1. Disponible en: https://www.mdpi.com/2504-2289/4/1/1/pdf?version=1584533390
Hermida RC, Ayala DE, Mojón A, Smolensky MH, Crespo JJ, Otero A, et al. La presión arterial ambulatoria, en comparación con la medida clínica, mejora notablemente la estratificación del riesgo cardiovascular de Framingham. Revista Española de Cardiología. 2021;74(11):953-61. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0300893220304760
Lee W-J. A study on word cloud techniques for analysis of unstructured text data. The Journal of the Convergence on Culture Technology. 2020;6(4):715-20. Disponible en: https://koreascience.kr/article/JAKO202034965718309.page
Babkowski MC. Monitorización ambulatoria de la presión arterial e insuficiencia cardíaca. Hipertensión y riesgo vascular. 2011 [acceso 06/06/2021];28(3):102-7. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1889183711000493
Sellén-Sanchén E, Ferrer-Herrera IM, Coll-Bujardon D. Monitoreo ambulatorio de presión arterial y respuesta a la cronoterapia en pacientes diabéticos hipertensos. Revista Archivo Médico de Camagüey. 2019 [acceso 06/06/2021];23(6):697-708. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025-02552019000600697
García Serrano C, Micol Bachiller M, Betrán Biurrun D, Aran Solé L, Pujol Salud J. El ritmo circadiano de la presión arterial y su relación con los factores de riesgo cardiovascular. Enfermería nefrológica. 2019;22(2):151-8. Disponible: https://scielo.isciii.es/scielo.php?pid=S2254-28842019000200151&script=sci_arttext&tlng=pt
Small AM, Kiss DH, Zlatsin Y, Birtwell DL, Williams H, Guerraty MA, et al. Text mining applied to electronic cardiovascular procedure reports to identify patients with trileaflet aortic stenosis and coronary artery disease. Journal of biomedical informatics. 2017 [acceso 06/06/2021];72:77-84. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28624641/
Jonnagaddala J, Liaw ST, Ray P, Kumar M, Chang NW, Dai HJ. Coronary artery disease risk assessment from unstructured electronic health records using text mining. Journal of biomedical informatics. 2015;58:S203-S10. Disponible en: https://www.sciencedirect.com/science/article/pii/S1532046415001707
Bagheri A, Groenhof TKJ, Asselbergs FW, Haitjema S, Bots ML, Veldhuis WB, et al. Automatic Prediction of Recurrence of Major Cardiovascular Events: A Text Mining Study Using Chest X-Ray Reports. Journal of Healthcare Engineering; 2021. Disponible en: https://www.hindawi.com/journals/jhe/2021/6663884/
Yadav D, Pandi G. A Survey Techniques Used for Prediction of Heart Attack with Machine Learning and Medical Text Mining. 2019. Disponible en: https://www.ijert.org/research/a-survey-on-prediction-techniques-of-heart-disease-using-machine-learning-IJERTV9IS060298.pdf
Downloads
Published
How to Cite
Issue
Section
License
Aquellos autores que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un repositorio institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores difundir su obra a través de Internet (p. ej.: en repositorios institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto). En ese caso, solicitamos que en la cabecera del manuscrito se indique:"Esta es una versión preprint enviada a la Revista Cubana de Información en Ciencias de la Salud http://rcics.sld.cu/"
ENGLISH VERSION
AUTHORS WITH PUBLICATIONS IN THIS JOURNAL ACCEPT THE FOLLOWING TERMS:
- Authors will retain their copyright and will grant the Journal the right of first publication of their work, which will also be subject to a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) allowing third parties to share the work as long as the author's name and data about initial publication in this Journal are stated.
- Authors may adopt other license agreements for non-exclusive distribution of the version of the work published (e.g. deposit it in an institutional repository or publish it in a monographic volume), as long as initial publication in this Journal is indicated.
- It is permitted and recommended for authors to disseminate their work on the Internet (e.g. in institutional repositories or their web page) before and during the submission process, which may result in interesting exchanges and increase the number of citations of the published work) (see The effect of open access).