Identification of Published Topics on Ambulatory Blood Pressure Monitoring using Text Mining

Authors

  • José Aureliano Betancourt Bethencourt 1Universidad de Ciencias Médicas de Camagüey, Centro de Inmunología y Productos Biológicos. Camagüey, Cuba. https://orcid.org/0000-0003-0043-9526
  • Elizabeth Sellén Sanchén Universidad de Ciencias Médicas de Camagüey, Hospital Universitario “Manuel Ascunce Domenech”, Departamento de Cardiología. Camagüey, Cuba.
  • Millelys Castro Consuegra Universidad de Ciencias Médicas de Camagüey, Centro de Inmunología y Productos Biológicos. Camagüey, Cuba.

Keywords:

artificial intelligence, blood pressure, text mining, ambulatory monitoring, data science, software, Cardiology.

Abstract

Systemic arterial hypertension is the most prevalent disease worldwide that significantly increases cardiovascular risk. Ambulatory blood pressure monitoring allows recording readings over a 24-hour period, whether the patient is awake or asleep; it also detects occult hypertension and rules out white coat hypertension. The research aimed to identify published topics on ambulatory blood pressure monitoring, using text mining. With an R script, the Europe PMC databases were accessed; the number of publications and topics researched about ambulatory blood pressure monitoring with the descriptor "ABPM", during the period from 2010 to 2022, were requested. With the tm package was taken from text format to document, which was inspected; unneeded words and punctuations were removed, the text matrix was prepared; the most frequent elements were searched and a bar chart with the most frequent terms and word cloud was plotted with the worcloud2 package. The word cloud graph, the graph of publications per year and the word frequency graph were obtained. It was possible to identify the main topics published in the last 12 years on ambulatory blood pressure monitoring, as well as the growing interest in the subject.

Downloads

Download data is not yet available.

Author Biography

José Aureliano Betancourt Bethencourt, 1Universidad de Ciencias Médicas de Camagüey, Centro de Inmunología y Productos Biológicos. Camagüey, Cuba.

Metodólogo de investigaciones en la Universidad de Ciencias Médicas de Camaguey.

Profesor auxiliar de Salud Pública

References

Lemus-Delgado D, Pérez Navarro R. Ciencia de datos y estudios globales: aportaciones y desafíos metodológicos. Colombia Internacional. 2020 [acceso 06/06/2021];(102):41-62. DOI: https://doi.org/10.7440/colombiaint102.2020.03

Sauza-Sosa JC, Cuéllar-Álvarez J, Villegas-Herrera KM, Sierra-Galán LM. Aspectos clínicos actuales del monitoreo ambulatorio de presión arterial. Archivos de Cardiología de México. 2016 [acceso 06/06/2021];86(3):255-9. Disponible en: https://www.scielo.org.mx/scielo.php?pid=S1405-99402016000300255&script=sci_abstract&tlng=pt

Consortium EP. Europe PMC: a full-text literature database for the life sciences and platform for innovation. Nucleic acids research. 2015 [acceso 06/06/2021];43(D1):D1042-D8. Disponible en: https://academic.oup.com/nar/article/43/D1/D1042/2437114

R_Core_Team. A language and environment for statistical computing. R Foundation for Statistical Computing. 2021 [acceso 06/06/2021]. Disponible en: https://www.r-project.org/

Feinerer I. Introduction to the tm Package Text Mining in R. 2022 [acceso 06/06/2021]. Disponible en: https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf

Lang D CG. Wordcloud2: Create Word Cloud by 'htmlwidget'_. R package version 0.2.12018. Disponible en: https://CRAN.R-project.org/package=wordcloud2

Hassani H, Beneki C, Unger S, Mazinani MT, Yeganegi MR. Text mining in big data analytics. Big Data and Cognitive Computing. 2020;4(1):1. Disponible en: https://www.mdpi.com/2504-2289/4/1/1/pdf?version=1584533390

Hermida RC, Ayala DE, Mojón A, Smolensky MH, Crespo JJ, Otero A, et al. La presión arterial ambulatoria, en comparación con la medida clínica, mejora notablemente la estratificación del riesgo cardiovascular de Framingham. Revista Española de Cardiología. 2021;74(11):953-61. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0300893220304760

Lee W-J. A study on word cloud techniques for analysis of unstructured text data. The Journal of the Convergence on Culture Technology. 2020;6(4):715-20. Disponible en: https://koreascience.kr/article/JAKO202034965718309.page

Babkowski MC. Monitorización ambulatoria de la presión arterial e insuficiencia cardíaca. Hipertensión y riesgo vascular. 2011 [acceso 06/06/2021];28(3):102-7. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1889183711000493

Sellén-Sanchén E, Ferrer-Herrera IM, Coll-Bujardon D. Monitoreo ambulatorio de presión arterial y respuesta a la cronoterapia en pacientes diabéticos hipertensos. Revista Archivo Médico de Camagüey. 2019 [acceso 06/06/2021];23(6):697-708. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025-02552019000600697

García Serrano C, Micol Bachiller M, Betrán Biurrun D, Aran Solé L, Pujol Salud J. El ritmo circadiano de la presión arterial y su relación con los factores de riesgo cardiovascular. Enfermería nefrológica. 2019;22(2):151-8. Disponible: https://scielo.isciii.es/scielo.php?pid=S2254-28842019000200151&script=sci_arttext&tlng=pt

Small AM, Kiss DH, Zlatsin Y, Birtwell DL, Williams H, Guerraty MA, et al. Text mining applied to electronic cardiovascular procedure reports to identify patients with trileaflet aortic stenosis and coronary artery disease. Journal of biomedical informatics. 2017 [acceso 06/06/2021];72:77-84. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28624641/

Jonnagaddala J, Liaw ST, Ray P, Kumar M, Chang NW, Dai HJ. Coronary artery disease risk assessment from unstructured electronic health records using text mining. Journal of biomedical informatics. 2015;58:S203-S10. Disponible en: https://www.sciencedirect.com/science/article/pii/S1532046415001707

Bagheri A, Groenhof TKJ, Asselbergs FW, Haitjema S, Bots ML, Veldhuis WB, et al. Automatic Prediction of Recurrence of Major Cardiovascular Events: A Text Mining Study Using Chest X-Ray Reports. Journal of Healthcare Engineering; 2021. Disponible en: https://www.hindawi.com/journals/jhe/2021/6663884/

Yadav D, Pandi G. A Survey Techniques Used for Prediction of Heart Attack with Machine Learning and Medical Text Mining. 2019. Disponible en: https://www.ijert.org/research/a-survey-on-prediction-techniques-of-heart-disease-using-machine-learning-IJERTV9IS060298.pdf

Published

2023-05-24

How to Cite

1.
Betancourt Bethencourt JA, Sellén Sanchén E, Castro Consuegra M. Identification of Published Topics on Ambulatory Blood Pressure Monitoring using Text Mining. Rev. cuba. inf. cienc. salud [Internet]. 2023 May 24 [cited 2025 Mar. 15];34. Available from: https://acimed.sld.cu/index.php/acimed/article/view/2349

Issue

Section

Contribuciones cortas