Bibliometric Analysis of Research on Boesenbergia rotunda, Pinostrobin, and Their Derivatives: Dominance of Southeast Asian Researchers

Autores/as

Palabras clave:

bibliometrics, Boesenbergia rotunda, Boesenbergia pandurate, derivative, fingerroot, medicinal plant, Pinostrobin, references, Scopus, Southeast Asia.

Resumen

Pinostrobin, marker compounds from Boesenbergia rotunda with various pharmacological activities, have been studied extensively, including synthesizing its derivatives, which have potent pharmacological activities. This study aims to describe research related to B. rotunda, pinostrobin, and their derivatives. Metadata information was collected from Scopus in August 2022, with three keywords searched for article titles, abstracts, and keywords. Analysis and research mapping were carried out with VOSviewer. The most widely used synonym for the plant name was “Boesenbergia rotunda”, in which Norzulaani Khalid from the University of Malaya, Malaysia, mostly reported research with the keywords “Boesenbergia rotunda”, “pinostrobin”, and “derivative”. The majority of researchers come from institutions in Southeast Asia, such as Malaysia, Thailand, and Indonesia. Interestingly, no Chinese researchers have reported studies on this topic. The journals and publishers that publish the most articles with these three keywords are Bioorganic and Medicinal Chemistry Letters and Elsevier, respectively. This information will make it easier for researchers on this topic to find partners for collaboration and determine journals to publish their research results.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Mohammad Rizki Fadhil Pratama, Universitas Airlangga

Master of Science (Pharmacy), Assistant Professor, Doctoral Program of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Jl Dr Ir H Soekarno Mulyorejo, Surabaya 60115, East Java, Indonesia. Scopus: 56925239400. Researcher ID: O-5182-2016, ORCiD: 0000-0002-0727-4392.

Ersanda Nurma Praditapuspa, Universitas Hang Tuah

Master of Pharmacy, Lecturer, Department of Pharmacy, Faculty of Medicine, Universitas Hang Tuah, Jl Arief Rachman Hakim No 150 Sukolilo, Surabaya 60111, East Java, Indonesia. Scopus: 57266076100. ORCiD: 0000-0002-7190-9495.

Anita Puspa Widiyana, Universitas Airlangga

Master of Pharmacy, Assistant Professor, Doctoral Program of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Jl Dr Ir H Soekarno Mulyorejo, Surabaya 60115, East Java, Indonesia. Scopus: 57972271500. Researcher ID: GWM-8705-2022, ORCiD: 0000-0002-6342-2855.

Dini Kesuma, Universitas Surabaya

Doctor of Pharmaceutical Science, Assistant Professor, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Surabaya, Jl Raya Kalirungkut Tenggilis, Surabaya 60293, East Java, Indonesia. Scopus: 57204519743. Researcher ID: GLQ-9458-2022. ORCiD: 0000-0002-6612-372X.

Hadi Poerwono, Universitas Airlangga

Doctor of Pharmaceutical Science, Associate Professor, Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Jl Dr Ir H Soekarno Mulyorejo, Surabaya 60115, East Java, Indonesia. Scopus: 6506293964. Researcher ID: GPK-3738-2022, ORCiD: 0000-0002-9241-9161.

Tri Widiandani, Universitas Airlangga

Doctor of Pharmaceutical Science, Assistant Professor, Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Jl Dr Ir H Soekarno Mulyorejo, Surabaya 60115, East Java, Indonesia. Scopus: 56073996900. Researcher ID: AAD-9991-2020, ORCiD: 0000-0002-0156-6095.

Marcellino Rudyanto, Universitas Airlangga

Doctor of Pharmaceutical Science, Associate Professor, Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Jl Dr Ir H Soekarno Mulyorejo, Surabaya 60115, East Java, Indonesia. Scopus: 6506392805. Researcher ID: GPK-3107-2022, ORCiD: 0000-0002-9241-9161.

Siswandono Siswodihardjo, Universitas Airlangga

Doctor of Pharmaceutical Science, Professor, Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Jl Dr Ir H Soekarno Mulyorejo, Surabaya 60115, East Java, Indonesia. Scopus: 22939052100. Researcher ID: AAT-1179-2021, ORCiD: 0000-0002-9579-8929.

Citas

Sohail MI, Siddiqui A, Erum N, Kamran M. Phytomedicine and the COVID-19 pandemic. Phytomedicine. 2021;25:693-708. DOI: https://dx.doi.org/10.1016/B978-0-12-824109-7.00005-4

Pawelczyk A, Zaprutko L. Anti-COVID drugs: repurposing existing drugs or search for new complex entities, strategies and perspectives. Future Med Chem. 2020;12(19):1743-57. DOI: https://doi.org/10.4155/fmc-2020-0204

Boukhatem MN, Setzer WN. Aromatic Herbs, Medicinal Plant-Derived Essential Oils, and Phytochemical Extracts as Potential Therapies for Coronaviruses: Future Perspectives. Plants. 2020;9(6):800. DOI: https://doi.org/10.3390/plants9060800

Yadav M, Dhagat S, Eswari JS. Emerging strategies on in silico drug development against COVID-19: challenges and opportunities. Eur J Pharm Sci. 2020;155:105522. DOI: https://doi.org/10.1016/j.ejps.2020.105522

Gorlenko CL, Kiselev HY, Budanova EV, Zamyatnin Jr AA, Ikryannikova LN. Plant Secondary Metabolites in the Battle of Drugs and Drug-Resistant Bacteria: New Heroes or Worse Clones of Antibiotics? Antibiotics. 2020;9(4):170. DOI: https://doi.org/10.3390/antibiotics9040170

Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites. 2019;9(11):258. DOI: https://doi.org/10.3390/metabo9110258

Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK, et al. New Perspectives on How to Discover Drugs from Herbal Medicines: CAM's Outstanding Contribution to Modern Therapeutics. Evid Based Complement Alternat Med. 2013;2013:627375. DOI: https://doi.org/10.1155/2013/627375

Ota A, Ulrih NP. An Overview of Herbal Products and Secondary Metabolites Used for Management of Type Two Diabetes. Front Pharmacol. 2017;8:436. DOI: https://doi.org/10.3389/fphar.2017.00436

Seca AML, Pinto DCG. Biological Potential and Medical Use of Secondary Metabolites. Medicines. 2019;6(2):66. DOI: https://doi.org/10.3390/medicines6020066

Pinto MMM, Palmeira A, Fernandes C, Resende DISP, Sousa E, Cidade H, et al. From Natural Products to New Synthetic Small Molecules: A Journey through the World of Xanthones. Molecules. 2021;26(2):431. DOI: https://doi.org/10.3390/molecules26020431

Konstat-Korzenny E, Ascencio-Aragón AA, Niezen-Lugo S, Vázquez-López R. Artemisinin and Its Synthetic Derivatives as a Possible Therapy for Cancer. Med Sci. 2018;6(1):19. DOI: https://doi.org/10.3390/medsci6010019

Mbese Z, Khwaza V, Aderibigbe BA. Curcumin and Its Derivatives as Potential Therapeutic Agents in Prostate, Colon and Breast Cancers. Molecules. 2019;24(23):4386. DOI: https://doi.org/10.3390/molecules24234386

Eng-Chong T, Yean-Kee L, Chin-Fei C, Choon-Han H, Sher-Ming W, Li-Ping CT, et al. Boesenbergia rotunda: From Ethnomedicine to Drug Discovery. Evid Based Complement Alternat Med. 2012;2012:473637. DOI: https://doi.org/10.1155/2012/473637

Fahey JW, Stephenson KK. Pinostrobin from honey and Thai ginger (Boesenbergia pandurata): a potent flavonoid inducer of mammalian phase 2 chemoprotective and antioxidant enzymes. J Agric Food Chem. 2002;50(25):7472-6. DOI: https://doi.org/10.1021/jf025692k

Patel NK, Jaiswal G, Bhutani KK. A review on biological sources, chemistry and pharmacological activities of pinostrobin. Nat Prod Res. 2016;30(18):2017-27. DOI: https://doi.org/10.1080/14786419.2015.1107556

Kiat TS, Pippen R, Yusof R, Ibrahim H, Khalid N, Rahman NA. Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease. Bioorg Med Chem Lett. 2006;16(12):3337-40. DOI: https://doi.org/10.1016/j.bmcl.2005.12.075

Kicuntod J, Sangpheak K, Mueller M, Wolschann P, Viernstein H, Yanaka S, et al. Theoretical and Experimental Studies on Inclusion Complexes of Pinostrobin and β-Cyclodextrins. Sci Pharm. 2018;86(1):5. DOI: https://doi.org/10.3390/scipharm86010005

Marliyana SD, Mujahidin D, Syah YM. Pinostrobin Derivatives from Prenylation Reaction and their Antibacterial Activity against Clinical Bacteria. IOP Conf Ser Mater Sci Eng. 2018;349:012057. DOI: https://doi.org/10.1088/1757-899X/349/1/012057

Junior WAR, Gomes DB, Zanchet B, Schönell AP, Diel KAP, Banzato TP, et al. Antiproliferative effects of pinostrobin and 5,6-dehydrokavain isolated from leaves of Alpinia zerumbet. Rev Bras Farmacogn. 2017;27(5):592-8. DOI: https://doi.org/10.1016/j.bjp.2017.05.007

Pratama MRF, Poerwono H, Siswandono S. Design and Molecular Docking of Novel 5-O-Benzoylpinostrobin Derivatives as Anti-Breast Cancer. Thai J Pharm Sci. 2019;43(4):201-12.

Poerwono H, Sasaki S, Hattori Y, Higashiyama K. Efficient microwave-assisted prenylation of pinostrobin and biological evaluation of its derivatives as antitumor agents. Bioorg Med Chem Lett. 2010;20(7);2086-9. DOI: https://doi.org/10.1016/j.bmcl.2010.02.068

Tan BC, Tan SK, Wong SM, Ata N, Rahman NA, Khalid N. Distribution of Flavonoids and Cyclohexenyl Chalcone Derivatives in Conventional Propagated and In Vitro-Derived Field-Grown Boesenbergia rotunda (L.) Mansf. Evid Based Complement Alternat Med. 2015;2015:451870. DOI: https://doi.org/10.1155/2015/451870

Tang C, Liu D, Fan Y, Yu J, Li C, Su J, et al. Visualization and bibliometric analysis of cAMP signaling system research trends and hotspots in cancer. J Cancer. 2021;12(2):358-70. DOI: https://doi.org/10.7150/jca.47158

Burghardt KJ, Howlett BH, Khoury AS, Fern SM, Burghardt PR. Three Commonly Utilized Scholarly Databases and a Social Network Site Provide Different, But Related, Metrics of Pharmacy Faculty Publication. Publications. 2020;8(2):18. DOI: https://doi.org/10.3390/publications8020018

Donohue JC. A bibliometric analysis of certain information science literature. J Am Soc Inf Sci. 1972;23(5):313-7. DOI: https://doi.org/10.1002/asi.4630230506

Ellegard O, Wallin JA. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics. 2015;105:1809-31. DOI: https://doi.org/10.1007/s11192-015-1645-z

AlRyalat SAS, Malkawi LW, Momani SM. Comparing Bibliometric Analysis Using PubMed, Scopus, and Web of Science Databases. J Vis Exp. 2019;152:e58494. DOI: https://doi.org/10.3791/58494

van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84:523-38. DOI: https://doi.org/10.1007/s11192-009-0146-3

Liao H, Tang M, Luo L, Li C, Chiclana F, Zeng XJ. A Bibliometric Analysis and Visualization of Medical Big Data Research. Sustainability. 2018;10(1):166. DOI: https://doi.org/10.3390/su10010166

Yeung AWK, Heinrich M, Kijjoa A, Tzvetkov NT, Atanasov AG. The ethnopharmacological literature: An analysis of the scientific landscape. J Ethnopharmacol. 2020;250:112414. DOI: https://doi.org/10.1016/j.jep.2019.112414

Yeung AWK, Heinrich M, Atanasov AG. Ethnopharmacology-A Bibliometric Analysis of a Field of Research Meandering Between Medicine and Food Science? Front Pharmacol. 2018;9:215. DOI: https://doi.org/10.3389/fphar.2018.00215

Xiao C, Peng T, Liu J. Analysis on hotspots and frontiers of Chinese Citrus research based on WOS and CiteSpace in the past decade. J Fruit Sci. 2020;37:1573-83. DOI: https://doi.org/10.13925/j.cnki.gsxb.20150542

Pagarete A, Ramos AS, Puntervoll P, Allen MJ, Verdelho V. Antiviral Potential of Algal Metabolites-A Comprehensive Review. Mar Drugs. 2021;19(2):94. DOI: https://doi.org/10.3390/md19020094

Fakchich J, Elachouri M. An overview on ethnobotanico-pharmacological studies carried out in Morocco, from 1991 to 2015: Systematic review (part 1). J Ethnopharmacol. 2021;267:113200. DOI: https://doi.org/10.1016/j.jep.2020.113200

Tomaszewski R. Application of Bibliometric Analysis to Letters Journals in Organic Chemistry. Ser Libr. 2020;79(1-2):91-106. DOI: https://doi.org/10.1080/0361526X.2020.1760185

Baas J, Schotten M, Plume A, Côté G, Karimi R. Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quant Sci Stud. 2020;1(1):377-86. DOI: https://doi.org/10.1162/qss_a_00019

Hudha MN, Hamidah I, Permanasari A, Abdullah AG, Rachman I, Matsumoto T. Low Carbon Education: A Review and Bibliometric Analysis. Eur J Educ Res. 2020;9(1):319-29. DOI: https://doi.org/10.12973/eu-jer.9.1.319

Simko I. Analysis of bibliometric indicators to determine citation bias. Palgrave Commun. 2015;1:15011. DOI: https://doi.org/10.1057/palcomms.2015.11

Chatsumpun N, Sritularak B, Likhitwitayawuid K. New Biflavonoids with α-Glucosidase and Pancreatic Lipase Inhibitory Activities from Boesenbergia rotunda. Molecules. 2017;22(11):1862. DOI: https://doi.org/10.3390/molecules22111862

Chahyadi A, Hartati R, Wirasutisna KR, Elfahmi. Boesenbergia Pandurata Roxb. An Indonesian Medicinal Plant: Phytochemistry, Biological Activity, Plant Biotechnology. Procedia Chem. 2014;13:13-37. DOI: https://doi.org/10.1016/j.proche.2014.12.003

Tullu MS. Writing the title and abstract for a research paper: Being concise, precise, and meticulous is the key. Saudi J Anaesth. 2019;13(5):12-7. DOI: https://doi.org/10.4103/sja.sja_685_18

Suiter AM, Sarli CC. Selecting a Journal for Publication: Criteria to Consider. Mo Med. 2019;116(6):461-5.

Chen C, Song M. Visualizing a field of research: A methodology of systematic scientometric reviews. PLoS One. 2019;14:e0223994. DOI: https://doi.org/10.1371/journal.pone.0223994

Palmblad M, van Eck NJ. Bibliometric Analyses Reveal Patterns of Collaboration between ASMS Members. J Am Soc Mass Spectrom. 2018;29(3):447-54. DOI: https://doi.org/10.1007/s13361-017-1846-1

Cainelli G, Maggioni MA, Uberti TE, de Felice A. The strength of strong ties: How co-authorship affect productivity of academic economists? Scientometrics. 2015;102:673-99. DOI: https://doi.org/10.1007/s11192-014-1421-5

Boyack KW, Klavans R. Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? J Am Soc Inf Sci. 2010;61(12):2389-404. DOI: https://doi.org/10.1002/asi.21419

Luczaj LJ. Plant identification credibility in ethnobotany: a closer look at Polish ethnographic studies. J Ethnobiol Ethnomedicine. 2010;6:36. DOI: https://doi.org/10.1186/1746-4269-6-36

Vucovich LA, Baker JB, Smith JT. Analyzing the impact of an author's publications. J Med Libr Assoc. 2008;96(1):63-6. DOI: https://dx.doi.org/10.3163/1536-5050.96.1.63

Shokraneh F, Ilghami R, Masoomi R, Amanollahi A. How to Select a Journal to Submit and Publish Your Biomedical Paper? Bioimpacts. 2012;2(1):61-8. DOI: https://doi.org/10.5681/bi.2012.008

Valderrama-Zurián J, Aguilar-Moya R, Melero-Fuentes D, Aleixandre-Benavent R. A systematic analysis of duplicate records in Scopus. J Informetr. 2015;9(3):570-6. DOI: https://doi.org/10.1016/j.joi.2015.05.002

Skute I, Zalewska-Kurek K, Hatak I, de Weerd-Nederhof P. Mapping the field: a bibliometric analysis of the literature on university–industry collaborations. J Technol Transf. 2019;44:916-47. DOI: https://doi.org/10.1007/s10961-017-9637-1

Isa NM, Abdelwahab SI, Mohan S, Abdul AB, Sukari MA, Taha MME, et al. In vitro anti-inflammatory, cytotoxic and antioxidant activities of boesenbergin A, a chalcone isolated from Boesenbergia rotunda (L.) (fingerroot). Braz J Med Biol Res. 2012;45(6):524-30. DOI: https://doi.org/10.1590/s0100-879x2012007500022

Kanchanapiboon J, Kongsa U, Pattamadilok D, Kamponchaidet S, Wachisunthon D, Poonsatha S, et al. Boesenbergia rotunda extract inhibits Candida albicans biofilm formation by pinostrobin and pinocembrin. J Ethnopharmacol. 2020;261:113192. DOI: https://doi.org/10.1016/j.jep.2020.113193

Praditapuspa EN, Siswandono, Widiandani T. In Silico Analysis of Pinostrobin Derivatives from Boesenbergia pandurata on ErbB4 Kinase Target and QSPR Linear Models to Predict Drug Clearance for Searching Anti-Breast Cancer Drug Candidates. Pharmacogn J. 2021;13(5):1143-9. DOI: http://dx.doi.org/10.5530/pj.2021.13.147

Dauncey EA, Irving J, Allkin R, Robinson N. Common mistakes when using plant names and how to avoid them. Eur J Integr Med. 2016;8(5):597-601. DOI: https://doi.org/10.1016/j.eujim.2016.09.005

Wangkangwan W, Boonkerd S, Chavasiri W, Sukapirom K, Pattanapanyasat K, Kongkathip N, et al. Pinostrobin from Boesenbergia pandurata is an inhibitor of Ca2+-signal-mediated cell-cycle regulation in the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem. 2009;73(7):1679-82. DOI: https://doi.org/10.1271/bbb.90114

Trakoontivakorn G, Nakahara K, Shinmoto H, Takenaka M, Onishi-Kameyama M, Ono H, et al. Structural analysis of a novel antimutagenic compound, 4-Hydroxypanduratin A, and the antimutagenic activity of flavonoids in a Thai spice, fingerroot (Boesenbergia pandurata Schult.) against mutagenic heterocyclic amines. J Agric Food Chem. 2001;49(6):3046-50. DOI: https://doi.org/10.1021/jf010016o

Little DP. Recognition of Latin scientific names using artificial neural networks. Appl Plant Sci. 2020;8(7):e11378. DOI: https://doi.org/10.1002/aps3.11378

Ongwisespaiboon O, Jiraungkoorskul W. Fingerroot, Boesenbergia rotunda and its Aphrodisiac Activity. Pharmacogn Rev. 2017;11(21):27-30. DOI: https://doi.org/10.4103/phrev.phrev_50_16

Peng C, He M, Cutrona SL, Kiefe CI, Liu F, Wang Z. Theme Trends and Knowledge Structure on Mobile Health Apps: Bibliometric Analysis. JMIR Mhealth Uhealth. 2020;8(7):e18212. DOI: https://doi.org/10.2196/18212

Descargas

Publicado

2023-07-06

Cómo citar

1.
Pratama MRF, Praditapuspa EN, Widiyana AP, Kesuma D, Poerwono H, Widiandani T, et al. Bibliometric Analysis of Research on Boesenbergia rotunda, Pinostrobin, and Their Derivatives: Dominance of Southeast Asian Researchers. Rev. cuba. inf. cienc. salud [Internet]. 6 de julio de 2023 [citado 14 de marzo de 2025];34. Disponible en: https://acimed.sld.cu/index.php/acimed/article/view/2423

Número

Sección

Artículos Originales