Contribuciones del aprendizaje automático en el descubrimiento del dengue: un análisis cienciométrico

Autores/as

Palabras clave:

machine learning, dengue, diagnóstico, pronóstico, variables meteorológicas.

Resumen

El dengue es una enfermedad vírica que cobra vidas humanas año tras año, lo que genera la necesidad de explorar nuevas soluciones desde la informática para lograr una detección temprana y eficaz. Este estudio tuvo como objetivo identificar las tendencias de investigación que vinculan las técnicas de aprendizaje automático (machine learning) con el dengue. Para este fin, se realizó un análisis cienciométrico y sistemático, que comenzó con una búsqueda de aprendizaje automático y dengue en Scopus sin restricciones temporales. Se hallaron 377 documentos publicados entre 2010 y 2022. Posteriormente, se aplicó la técnica PRISMA y se filtraron los documentos a partir de los criterios de inclusión y exclusión para asegurar la calidad del análisis. Mediante el empleo de herramientas como R Studio, la biblioteca biblioshiny de bibliometrix y VOSviewer se examinaron los elementos clave de la producción científica como: países, autores destacados, revistas relevantes y co-ocurrencias de palabras clave. Los resultados permitieron identificar tres áreas de enfoque: diagnóstico del dengue, pronóstico del dengue y control de mosquitos. Se encontró que la investigación en el uso del aprendizaje automático para detectar el dengue ha crecido de manera constante y ha atraído a más investigadores a partir de 2016. Las técnicas de aprendizaje automático más utilizadas son: Artificial Neural Network (ANN), Decision Tree, Support Vector Machine (SVM) y una tendencia a usar Deep learning. Por su parte, el área del diagnóstico utiliza variables meteorológicas como humedad, temperatura y lluvias para realizar los pronósticos de los brotes del dengue.

Biografía del autor/a

Andrés Solano-Barliza, Universidad de La Guajira, Riohacha

Docente ocasional de la facultad de Ingeniería

Citas

Rosen L, Shroyer DA, Tesh RB, Freier JE, Lien JC. Transovarial transmission of dengue viruses by mosquitoes: Aedes albopictus and Aedes aegypti. The American Journal of Tropical Medicine and Hygiene. 1983;32(5):1108-19.

Dey SK, Rahman MdM, Howlader A, Siddiqi UR, Uddin KMM, Borhan R, et al. Prediction of dengue incidents using hospitalized patients, metrological and socio-economic data in Bangladesh: A machine learning approach. Bhattacharjee D, editor. PLOS ONE. 2022;17(7):e0270933, DOI: https://doi.org/10.1371/journal.pone.0270933

WHO. Dengue y dengue grave. 2021 [acceso 03/10/2021]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/dengue-and-severe-dengue

Guo P, Liu T, Zhang Q, Wang L, Xiao J, Zhang Q, et al. Developing a dengue forecast model using machine learning: A case study in China. Althouse B, editor. PLOS Neglected Tropical Diseases. 2017;16;11(10):e0005973. DOI: https://doi.org/10.1371/journal.pntd.0005973

Carvajal TM, Viacrucis KM, Hernández LFT, Ho HT, Amalin DM, Watanabe K. Machine learning methods reveal the temporal pattern of dengue incidence using meteorological factors in metropolitan Manila, Philippines. BMC Infectious Diseases. 2018;18(1):183. DOI: https://doi.org/10.1186/s12879-018-3066-0

Lindsay M, Mackenzie J. Vector-borne viral diseases and climate change in the Australasian region: Major concerns and the public health response. En: Curson P, Guest C, Jackson E, editors. The UWA Profiles and Research Repository: Australian Medical Association and Greenpeace International.1997 [acceso 20/10/2023]:47-62. Disponible en: https://research-repository.uwa.edu.au/en/publications/vector-borne-viral-diseases-and-climate-change-in-the-australasia

Gratz NG. Emerging and resurging vector-borne diseases. Annual Review of Entomology. 1999;44(1):51-75.

Hales S, de Wet N, Maindonald J, Woodward A. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. The Lancet. 2002;360(9336):830-4. DOI: https://doi.org/10.1016/S0140-6736(02)09964-6

Mellor PS, Leake CJ. Climatic and geographic influences on arboviral infections and vectors. Revue Scientifique et Technique-Office International des Epizooties. 2000 [acceso 20/07/2023];19(1):41-60. Disponible en: https://acortar.link/4dS2FW

Fredericks AC, Fernández-Sesma A. The burden of dengue and chikungunya worldwide: implications for the southern United States and California. Annals of global health. 2014;80(6):466-75. DOI: https://doi.org/10.1016/j.aogh.2015.02.00

OPS. Actualización Epidemiológica Dengue, chikunguña y Zika en el contexto de COVID-19 23 de diciembre de 2021. 2021 [acceso 30/03/2022]. Disponible en: https://iris.paho.org/bitstream/handle/10665.2/55639/EpiUpdate23Dec2021_spa.pdf?sequence=2&isAllowed=y

Salami D, Sousa CA, Martins M do RO, Capinha C. Predicting dengue importation into Europe, using machine learning and model-agnostic methods. Scientific Reports. 2020 [acceso 20/07/2023]16;10(1). Disponible en: https://www.nature.com/articles/s41598-020-66650-1

Nguyen VH, Tuyet-Hanh TT, Mulhall J, Minh HV, Duong TQ, Chien NV, et al. Deep learning models for forecasting dengue fever based on climate data in Vietnam. Kamel MG, editor. PLOS Neglected Tropical Diseases. 2022 13;16(6):e0010509. DOI: https://doi.org/10.1371/journal.pntd.0010509

Gambhir S, Malik SK, Kumar Y. PSO-ANN based diagnostic model for the early detection of dengue disease. New Horizons in Translational Medicine. 2017;4(1):1-8. DOI: https://doi.org/10.1016/j.nhtm.2017.10.001

Hoyos W, Aguilar J, Toro M. A clinical decision-support system for dengue based on fuzzy cognitive maps. Health Care Manag Sci. 2022;(16). DOI: https://doi.org/10.1007/s10729-022-09611-6

León-Gómez A, Ruiz-Palomo D, Fernández-Gámez MA, García-Revilla MR. Sustainable tourism development and economic growth: Bibliometric review and analysis. Sustainability. 2021;13(4):2270. DOI: https://doi.org/10.3390/su13042270

Santos-Jaén JM, León-Gómez A, Serrano-Madrid J. The Effect of Corporate Social Responsibility on Earnings Management: Bibliometric Review. International Journal of Financial Studies. 2021;9(4):68. DOI: https://doi.org/10.3390/ijfs9040068

SJR. SJR-Help. 2022 [acceso 24/06/2023]. Disponible en: https://www.scimagojr.com/help.php#understand_countries

Hirsch JE. Hα: An index to quantify an individual’s scientific leadership. Scientometrics. 2019 [acceso 20/07/2023]5;118(2):673-86. Disponible en: https://link.springer.com/article/10.1007/s11192-018-2994-1

Hirsch JE. An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences. 2005;102(46):16569-72. Disponible en: https://www.pnas.org/content/102/46/16569?pagewanted=all

ULPGC. Indicadores e índices de la producción científica | Biblioteca ULPGC. 2022 [acceso 24/07/2023]. Disponible en: https://biblioteca.ulpgc.es/factor_impacto](https://biblioteca.ulpgc.es/factor_impacto

Pérez. Los índice h y m. 2009 [acceso 24/06/2023]. Disponible en: https://grupodih.info/lp.html](https://grupodih.info/lp.html

Gambhir S, Malik SK, Kumar Y. The diagnosis of dengue disease: An evaluation of three machine learning approaches. IGI Global. En: I. Management Association (Ed.). Cognitive Analytics: Concepts, Methodologies, Tools, and Applications. 2020:1076-95. DOI: https://doi.org/10.4018/978-1-7998-2460-2.ch055

Davi C, Pastor A, Oliveira T, Neto FB d L, Braga-Neto U, Bigham AW, et al. Severe Dengue Prognosis Using Human Genome Data and Machine Learning. IEEE Transactions on Biomedical Engineering. 2019;66(10):2861-8. DOI: https://doi.org/10.1109/TBME.2019.2897285

Mello-Román JD, Mello-Román JC, Gómez-Guerrero S, García-Torres M. Predictive Models for the Medical Diagnosis of Dengue: A Case Study in Paraguay. Computational and Mathematical Methods in Medicine. 2019:1-7. DOI: https://doi.org/10.1155/2019/7307803

Jayampathi KTK, Jananjaya MAC, Fernando EPC, Liyanage YA, Pemadasa MGNM, Gunarathne GWDA. Mobile Medical Assistant and Analytical System for Dengue Patients. En: ICAC 2021-3rd International Conference on Advancements in Computing, Proceedings. 2021. DOI: https://doi.org/10.1109/ICAC54203.2021.9671097

Sultana Z, Nahar L, Basnin N, Hossain MS. Inference and Learning Methodology of Belief Rule Based Expert System to Assess Chikungunya. Communications in Computer and Information Science. 2021. En: Mahmud M, Kaiser MS, Kasabov N, Iftekharuddin K, Zhong N. (eds) Applied Intelligence and Informatics. AII 2021. Communications in Computer and Information Science. 2021;1435. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-82269-9_1

Singh KD. Particle Swarm Optimization assisted Support Vector Machine based Diagnostic System for Dengue prediction at the early stage. En: Proceedings-2021 3rd International Conference on Advances in Computing, Communication Control and Networking, ICAC3N 2021:844-8. DOI: https://doi.org/10.1109/ICAC3N53548.2021.9725670

Mariappan V, Adikari S, Shanmugam L, Easow JM, Balakrishna Pillai A. Expression dynamics of vascular endothelial markers: endoglin and syndecan-1 in predicting dengue disease outcome. Translational Research. 2021;232:121-41. DOI: https://doi.org/10.1016/j.trsl.2021.02.001

Hamdani H, Hatta HR, Puspitasari N, Septiarini A, Henderi. Dengue classification method using support vector machines and cross-validation techniques. IAES International Journal of Artificial Intelligence. 2022;11(3):1119-29. DOI: https://doi.org/10.11591/ijai.v11.i3.pp1119-1129

Sajid A, Awan MA. Monitoring, Tracking and Diagnosing Dengue Fever using Smartphone, GPS and Machine Learning. En ICET 2021-16th International Conference on Emerging Technologies 2021, Proceedings. 2021. DOI: https://doi.org/10.1109/ICET54505.2021.9689785

Boruah AN, Biswas SK, Baishya P, Ealapollu DC. Expert System for Dengue Fever Prediction (ESDFP). En: 2021 IEEE 2nd International Conference on Technology, Engineering, Management for Societal Impact using Marketing, Entrepreneurship and Talent, TEMSMET 2021. 2021. DOI: https://doi.org/10.1109/TEMSMET53515.2021.9768723

Abdualgalil B, Abraham S, Ismael WM. Early Diagnosis for Dengue Disease Prediction Using Efficient Machine Learning Techniques Based on Clinical Data. Journal of Robotics and Control (JRC). 2022;3(3):257-68. DOI: https://doi.org/10.18196/jrc.v3i3.14387

Caicedo-Torres W, Paternina-Caicedo Á, Pinzón-Redondo H, Gutiérrez J. Differential diagnosis of dengue and chikungunya in Colombian children using machine learning. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018;11238 LNAI:181-192. DOI: https://doi.org/10.1007/978-3-030-03928-8_15

Mishra S, Dash A, Jena L. Use of deep learning for disease detection and diagnosis. Studies in Computational Intelligence. 2021;903:181-201. DOI: https://doi.org/10.1007/978-981-15-5495-7_10

Hafqat S, Fayyaz M, Khattak HA, Bilal M, Khan S, Ishtiaq O, et al. Leveraging Deep Learning for Designing Healthcare Analytics Heuristic for Diagnostics. Neural Processing Letters. 2021 DOI: https://doi.org/10.1007/s11063-021-10425-w

Shukla A, Goyal V. Deep Learning-Based Severe Dengue Prognosis Using Human Genome Data with Novel Feature Selection Method. Advances in Intelligent Systems and Computing. 2021;1158:473-82. DOI: https://doi.org/10.1007/978-981-15-4409-5_43

Neto S, Tabosa T, Salomão Teixeira I, Rocha S, Vanderson, et al. Machine learning and deep learning techniques to support clinical diagnosis of arboviral diseases: A systematic review. PLoS Neglected Tropical Diseases. 2022;16(1). DOI: https://doi.org/10.1371/JOURNAL.PNTD.0010061

Ismail S, Fildes R, Ahmad R, Wan Mohamad Ali WN, Omar T. The practicality of Malaysia dengue outbreak forecasting model as an early warning system. Infectious Disease Modelling. 2022;7(3):510-25. DOI: https://doi.org/10.1016/j.idm.2022.07.008

Cordeiro da Silva CC, Lans de Lima C, Gomes da Silva AC, Machado Magalhaes G, Musah A, Aldosery A, et al. Spatiotemporal forecasting for dengue, chikungunya fever and Zika using machine learning and artificial expert committees based on meta-heuristics. Research on Biomedical Engineering. 2022;38(2):499-537. DOI: https://doi.org/10.1007/s42600-022-00202-6

Aleixo R, Kon F, Rocha R, Camargo MS, De Camargo RY. Predicting Dengue Outbreaks with Explainable Machine Learning. En: Proceedings-22nd IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing, CCGrid 2022. 2022:940-47. DOI: https://doi.org/10.1109/CCGrid54584.2022.00114

Dhaka A, Singh P. Comparative analysis of epidemic alert system using machine learning for dengue and chikungunya. En Proceedings of the Confluence 2020-10th International Conference on Cloud Computing, Data Science and Engineering. 2020:798-804. DOI: https://doi.org/10.1109/Confluence47617.2020.9058048

Patil S, Pandya S. Forecasting Dengue Hotspots Associated with Variation in Meteorological Parameters Using Regression and Time Series Models. Frontiers in Public Health. 2021. DOI: https://doi.org/10.3389/fpubh.2021.798034

Benedum CM, Shea KM, Jenkins HE, Kim LY, Makuzon N. Weekly dengue forecasts in Iquitos, Peru; San Juan, Puerto Rico; and Singapore. PLoS Neglected Tropical Diseases. 2020;14(10):1-26. DOI: https://doi.org/10.1371/journal.pntd.0008710

Bogado JV, Stalder DH, Schaerer CE, Gómez-Guerrero S. Time Series Clustering to Improve Dengue Cases Forecasting with Deep Learning. En Proceedings-2021 47th Latin American Computing Conference, CLEI 2021. 2021. DOI: https://doi.org/10.1109/CLEI53233.2021.9640130

Singh G, Soman B. Spatiotemporal epidemiology and forecasting of dengue in the state of Punjab, India: Study protocol. Spatial and Spatio-temporal Epidemiology. 2021;39:100444. DOI: https://doi.org/10.1016/j.sste.2021.100444

Indhumathi K, Kumar KS. Seasonal Infectious Disease Prediction based on Electronic Patient Health Records using Boosted Random Forest Algorithms. En: 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2022:2025-2032. DOI: https://doi.org/10.1109/ICACITE53722.2022.9823453

Rahman MS, Pientong C, Zafar S, Ekalaksananan T, Paul RE, Haque U, et al. Mapping the spatial distribution of the dengue vector Aedes aegypti and predicting its abundance in northeastern Thailand using machine-learning approach. One Health. 2021. DOI: https://doi.org/10.1016/j.onehlt.2021.100358

Zhao N, Charland K, Carabali M, Nsoesie EO, Maheu-Giroux M, Rees E, et al. Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia. PLoS Neglected Tropical Diseases. 2020;14(9):1-16. DOI: https://doi.org/10.1371/journal.pntd.0008056

Mussumeci E, Codeço Coelho F. Large-scale multivariate forecasting models for Dengue-LSTM versus random forest regression. Spatial and Spatio-temporal Epidemiology. 2020. DOI: https://doi.org/10.1016/j.sste.2020.100372

Sarma D, Hossain S, Mittra T, Bhuiya MAM, Saha I, Chakma R. Dengue Prediction using Machine Learning Algorithms. En: IEEE Region 10 Humanitarian Technology Conference, R10-HTC, 2020. 2020-December. DOI: https://doi.org/10.1109/R10-HTC49770.2020.9357035

Kapoor R, Ahuja S, Kadyan V. Machine Learning based Classification Algorithm for Classification of Dengue (Dengue Fever -DF, Dengue Harmonic Fever -DHF & Serve Dengue -SD). En: ECS Transactions, 2022;107(1):4659-73. DOI: https://doi.org/10.1149/10701.4659ecst

Babu DS, Raju B, Swapna S, Kolluri J, Ramesh D, Bonagiri R. Dengue symptoms classification analysis with improved conditional probability decision analysis. Applied Nanoscience. 2022. DOI: https://doi.org/10.1007/s13204-022-02387-9

Mustaffa Z, Sulaiman MH, Ernawan F, Yusof Y, Mohsin MFM. Dengue outbreak prediction: Hybrid meta-heuristic model. En: Proceedings-2018 IEEE/ACIS 19th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2018. 2018:271-4. DOI: https://doi.org/10.1109/SNPD.2018.8441095

Abeyrathna KD, Granmo OC, Zhang X, Goodwin M. Adaptive Continuous Feature Binarization for Tsetlin Machines Applied to Forecasting Dengue Incidences in the Philippines. En: 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020. 2020:2084-92. DOI: https://doi.org/10.1109/SSCI47803.2020.9308291

Dey L, Mukhopadhyay A. A Classification-based Approach to Prediction of Dengue Virus and Human Protein-Protein Interactions using Amino Acid Composition and Conjoint Triad Features. En: Proceedings of 2019 IEEE Region 10 Symposium, TENSYMP 2019. 2019:373-8. DOI: https://doi.org/10.1109/TENSYMP46218.2019.8971382

Yang Q, Chung J, Robinson KL, Schmidt TL, Ross PA, Liang J, et al. Sex-specific distribution and classification of Wolbachia infections and mitochondrial DNA haplogroups in Aedes albopictus from the Indo-Pacific. PLoS Neglected Tropical Diseases. 2022;16(4). DOI: https://doi.org/10.1371/journal.pntd.0010139

Yin MS, Haddawy P, Ziemer T, Wetjen F, Supratak A, Chiamsakul K, et al. A deep learning-based pipeline for mosquito detection and classification from wingbeat sounds. Multimedia Tools and Applications, 2022;82:5189-5205. DOI: https://doi.org/10.1007/s11042-022-13367-0

Rakotonirina A, Caruzzo C, Ballan V, Kainiu M, Marin M, Colot J, et al. Wolbachia detection in Aedes aegypti using MALDI-TOF MS coupled to artificial intelligence. Scientific Reports, 2021;11(1). DOI: https://doi.org/10.1038/s41598-021-00888-1

Lambert B, Sikulu-Lord MT, Mayagaya VS, Devine G, Dowell F, Churcher TS. Monitoring the Age of Mosquito Populations Using Near-Infrared Spectroscopy. Scientific Reports, 2018;8(1). DOI: https://doi.org/10.1038/s41598-018-22712-z

Boeris CE. Aplicación de métodos bibliométricos a la evaluación de colecciones: El caso de la Biblioteca del Instituto Argentino de Radioastronomía. [Tesis de grado]. Universidad Nacional de La Plata, Facultad de Humanidades Y Ciencias de la Educación. 2000 [acceso 24/06/2023]. p. 80 Disponible en: https://www.memoria.fahce.unlp.edu.ar/tesis/te.371/te.371.pdf

Martínez N, Carabel T, García S. Review of scientific research in ISO 9001 and ISO 14001: A bibliometric analysis. Cuadernos de Gestión. 2021 [acceso 24/06/2023];21(1):29-45. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7746411

Hoyos W, Aguilar J, Toro M. Dengue models based on machine learning techniques: A systematic literature review. Artificial Intelligence in Medicine. 2021;119:102157. DOI: https://doi.org/10.1016/j.artmed.2021.102157

Sylvestre E, Joachim C, Cécilia-Joseph E, Bouzillé G, Campillo-Gimenez B, Cuggia M, et al. Data-driven methods for dengue prediction and surveillance using real-world and Big Data: A systematic review. PLoS Neglected Tropical Diseases. 2022;16(1). DOI: https://doi.org/10.1371/journal.pntd.0010056

Balakumar M, Vontela HR, Shinde VV, Kulshrestha V, Mishra B, Aduri R. Dengue outbreak and severity prediction: current methods and the future scope. Virus Disease. 2022;33(2):125-31. DOI: https://doi.org/10.1007/s13337-022-00767-x

Keshavamurthy R, Dixon S, Pazdernik KT, Charles LE. Predicting infectious disease for biopreparedness and response: A systematic review of machine learning and deep learning approaches. One Health. 2022;15:100439. DOI: https://doi.org/10.1016/j.onehlt.2022.100439

Descargas

Publicado

2024-07-03

Cómo citar

1.
Arrubla-Hoyos W, Solano-Barliza A. Contribuciones del aprendizaje automático en el descubrimiento del dengue: un análisis cienciométrico. Rev. cuba. inf. cienc. salud [Internet]. 3 de julio de 2024 [citado 20 de enero de 2025];35. Disponible en: https://acimed.sld.cu/index.php/acimed/article/view/2630

Número

Sección

Artículos Originales